Geometreg Euclidaidd

Mae geometreg Euclidaidd yn system fathemategol a briodir i'r Groegwr Euclid, a ddisgrifiodd yn ei werslyfr ar geometreg: yr Elfennau. Mae dull Euclid yn cynnwys tybio set fach o wirebau (axioms), gan ddidynnu llawer o gynigion eraill (theoremau) o'r rhain. Er bod llawer o ganlyniadau Euclid wedi eu nodi gan fathemategwyr cynharach, Euclid oedd y cyntaf i ddangos sut y gallai'r gosodiadau hyn gyd-fynd â system gynhwysfawr a rhesymegol.[1][2][3]

Geometreg Euclidaidd
Delwedd:Dodecahedron.gif, Newton theorem.svg, HC R3-P3-A3-Pr3.png, Wallpaper group-p6m-4.jpg
Enghraifft o'r canlynolmaes o fewn mathemateg Edit this on Wikidata
Mathgeometreg Edit this on Wikidata
Rhan ogeometreg Edit this on Wikidata
Dechreuwyd3 g CC Edit this on Wikidata
Yn cynnwysEuclidean plane geometry Edit this on Wikidata
Tudalen Comin Ffeiliau perthnasol ar Gomin Wicimedia
Dalen o'r Elfennau gan Euclid, yn dangos triongl hafalochrog ΑΒΓ.

Mae'r Elfennau'n dechrau gyda geometreg planau, sy'n dal i gael ei addysgu yn yr ysgol uwchradd fel y system o wirebau gyntaf, a'r enghreifftiau cyntaf o brawf ffurfiol. Mae ei waith yn datblygu ymhellach i'r geometreg solat o dri dimensiwn. Mae llawer o'r Elfennau yn nodi canfyddiadau a elwir, bellach, yn algebra a theori rhif, a esboniwyd mewn iaith geometrig.

Mae geometreg Euclidaidd yn enghraifft o 'geometreg synthetig', gan ei fod yn datblygu'n yn rhesymegol o wirebau, sy'n disgrifio priodweddau sylfaenol gwrthrychau geometrig megis pwyntiau a llinellau, i osodiadau am y gwrthrychau hynny, i gyd heb ddefnyddio cyfesurynnau i nodi'r gwrthrychau hynny. Mae hyn yn gwbwl wahanol i 'geometreg dadansoddol', sy'n defnyddio cyfesurynnau i gyfieithu cynigion geometrig i fformiwlâu algebraidd.[4]

Gweler hefyd

golygu

Cyfeiriadau

golygu
  1. Eves, cyfr. 1., p. 19
  2. Eves (1963), cyfr. 1, p. 10
  3. Eves, t. 19
  4. Misner, Thorne, and Wheeler (1973), t. 47