Agor y brif ddewislen

Cangen o fathemateg bur yw damcaniaeth rhifau (neu theori rhif), sef yr astudiaeth o briodweddau rhifau. Cyfanrifau yw canolbwynt y maes, ond fe gyfyd problemau ehangach wrth eu hastudio, sy'n cysylltu damcaniaeth rhifau â sawl cangen arall o fathemateg. Dywedodd y mathemategydd Carl Friedrich Gauss (1777-1855), "Mathemateg yw Brenhines y gwyddorau - a theori rhif yw Brenhines mathemateg."[1] Mae maes damcaniaethwyr rhi yn cynnwys rhifau cysefin, nodweddion gwrthrychau a wnaed o rifau cymarebol a chyfanrifau alegbraidd.

Ni ddylid cymysgu damcaniaeth rhifau a rhifyddeg elfennol, sef dulliau o adio, tynnu, a lluosi. Hyd at ddechrau'r 20g y term a ddefnyddiwyd am y ddamcaniaeth rhifau oedd "rhifyddeg".

MeysyddGolygu

Gellir dosbarthu damcaniaeth rhifau yn sawl is-faes, yn ôl y dulliau a ddefnyddir a'r math o gwestiynau sy'n cael eu hymchwilio:

Damcaniaeth elfennol rhifauGolygu

Astudiaeth o'r cyfanrifau heb ddefnyddio dulliau o ganghenau eraill o fathemateg. Dyma rhai o'r pethau a astudir:

Er ei fod yn bosib mynegi rhai o broblemau mawr damcaniaeth rhifau o fewn damcaniaeth rhifau elfennol, yn aml mae angen dulliau a dealltwriaeth dwfn o feysydd eraill i'w datrus. Mae theorem olaf Fermat yn enghraifft o hyn.

Damcaniaeth ddadansoddol rhifauGolygu

Mae damcaniaeth dadansoddol rhifau yn defnyddio dulliau o galcwlws a dadansoddi cymhlyg i ymafael â phroblemau sy'n ymwneud a'r cyfanrifau.

Damcaniaeth algebreaidd rhifauGolygu

Yn y maes hwn, estynir y cysyniad o rif i gynnwys rhifau algebreaidd, sef gwreiddiau polynomialau sydd â chyfernodau cyfanrifol. Ceir rhifau algebreaidd sy'n ymddwyn yn debyg i gyfanrifau, y cyfanrifau algebreaidd.

Damcaniaeth geometregol rhifauGolygu

Damcaniaeth gyfuniadeddol rhifauGolygu

Damcaniaeth rhifau gyfrifiadurolGolygu

Gellir defnyddio algorithmau cyfrifiadurol perthnasol i gynorthwyo astudiaeth o damcaniaeth rhifau. Ceir cymhwysiad pwysig o rhai algorithmau wrth ceisio creu a thori codau, algorithmau chwim i brofi rhifau cysefin a ffactori rhifau mawr er enghraifft.

CyfeiriadauGolygu

  1. Long 1972, t. 1.